33 research outputs found

    Diurnal Differences in Immune Response in Brain, Blood and Spleen After Focal Cerebral Ischemia in Mice.

    Get PDF
    BACKGROUND The immune response to acute cerebral ischemia is a major factor in stroke pathobiology. Circadian biology modulates some aspects of immune response. The goal of this study is to compare key parameters of immune response during the active/awake phase versus inactive/sleep phase in a mouse model of transient focal cerebral ischemia. METHODS Mice were housed in normal or reversed light cycle rooms for 3 weeks, and then they were blindly subjected to transient focal cerebral ischemia. Flow cytometry was used to examine immune responses in blood, spleen, and brain at 3 days after ischemic onset. RESULTS In blood, there were higher levels of circulating T cells in mice subjected to focal ischemia during zeitgeber time (ZT)1-3 (inactive or sleep phase) versus ZT13-15 mice (active or awake phase). In the spleen, organ weight and immune cell numbers were lower in ZT1-3 versus ZT13-15 mice. Consistent with these results, there was an increased infiltration of activated T cells into brain at ZT1-3 compared with ZT13-15. CONCLUSIONS This proof-of-concept study indicates that there are significant diurnal effects on the immune response after focal cerebral ischemia in mice. Hence, therapeutic strategies focused on immune targets should be reassessed to account for the effects of diurnal rhythms and circadian biology in nocturnal rodent models of stroke.Supported in part by the Rappaport Foundation and Leducq Foundation. The authors thank all team members of the MGH animal facility for help with light schedule switching.S

    Quantifying the Microvascular Origin of BOLD-fMRI from First Principles with Two-Photon Microscopy and an Oxygen-Sensitive Nanoprobe

    Get PDF
    The blood oxygenation level-dependent (BOLD) contrast is widely used in functional magnetic resonance imaging (fMRI) studies aimed at investigating neuronal activity. However, the BOLD signal reflects changes in blood volume and oxygenation rather than neuronal activity per se. Therefore, understanding the transformation of microscopic vascular behavior into macroscopic BOLD signals is at the foundation of physiologically informed noninvasive neuroimaging. Here, we use oxygen-sensitive two-photon microscopy to measure the BOLD-relevant microvascular physiology occurring within a typical rodent fMRI voxel and predict the BOLD signal from first principles using those measurements. The predictive power of the approach is illustrated by quantifying variations in the BOLD signal induced by the morphological folding of the human cortex. This framework is then used to quantify the contribution of individual vascular compartments and other factors to the BOLD signal for different magnet strengths and pulse sequences.National Institutes of Health (U.S.) (Grant P41RR14075)National Institutes of Health (U.S.) (Grant R01NS067050)National Institutes of Health (U.S.) (Grant R01NS057198)National Institutes of Health (U.S.) (Grant R01EB000790)American Heart Association (Grant 11SDG7600037)Advanced Multimodal NeuroImaging Training Program (R90DA023427

    Functional magnetic particle imaging (fMPI) of cerebrovascular changes in the rat brain during hypercapnia

    No full text
    Objective.Non-invasive functional brain imaging modalities are limited in number, each with its own complex trade-offs between sensitivity, spatial and temporal resolution, and the directness with which the measured signals reflect neuronal activation. Magnetic particle imaging (MPI) directly maps the cerebral blood volume (CBV), and its high sensitivity derives from the nonlinear magnetization of the superparamagnetic iron oxide nanoparticle (SPION) tracer confined to the blood pool. Our work evaluates functional MPI (fMPI) as a new hemodynamic functional imaging modality by mapping the CBV response in a rodent model where CBV is modulated by hypercapnic breathing manipulation.Approach.The rodent fMPI time-series data were acquired with a mechanically rotating field-free line MPI scanner capable of 5 s temporal resolution and 3 mm spatial resolution. The rat's CBV was modulated for 30 min with alternating 5 min hyper-/hypocapnic states, and processed using conventional fMRI tools. We compare our results to fMRI responses undergoing similar hypercapnia protocols found in the literature, and reinforce this comparison in a study of one rat with 9.4T BOLD fMRI using the identical protocol.Main results.The initial image in the time-series showed mean resting brain voxel SNR values, averaged across rats, of 99.9 following the first 10 mg kg-1SPION injection and 134 following the second. The time-series fit a conventional General Linear Model with a 15%-40% CBV change and a peak pixel CNR between 12 and 29, 2-6× higher than found in fMRI.Significance.This work introduces a functional modality with high sensitivity, although currently limited spatial and temporal resolution. With future clinical-scale development, a large increase in sensitivity could supplement other modalities and help transition functional brain imaging from a neuroscience tool focusing on population averages to a clinically relevant modality capable of detecting differences in individual patients.ISSN:1361-6560ISSN:0031-915

    Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue

    Full text link
    Published in final edited form as: Nat Methods. 2010 September ; 7(9): 755–759. doi:10.1038/nmeth.1490.Measurements of oxygen partial pressure (pO(2)) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO(2) measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here we report to our knowledge the first practical in vivo two-photon high-resolution pO(2) measurements in small rodents' cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 microm, sub-second temporal resolution and requires low probe concentration. The properties of the probe allowed for direct high-resolution measurement of cortical extravascular (tissue) pO(2), opening many possibilities for functional metabolic brain studies.K99 NS067050 - NINDS NIH HHS; R01 NS051188 - NINDS NIH HHS; R01EB000790 - NIBIB NIH HHS; R01 EB007279-04 - NIBIB NIH HHS; R01 EB000790-05 - NIBIB NIH HHS; R01 HL081273-04 - NHLBI NIH HHS; P50 NS010828-320035 - NINDS NIH HHS; P01NS055104 - NINDS NIH HHS; R01 NS057476 - NINDS NIH HHS; K99NS067050 - NINDS NIH HHS; R01 EB000790 - NIBIB NIH HHS; R01 NS057198 - NINDS NIH HHS; P50NS010828 - NINDS NIH HHS; R01 NS057476-04 - NINDS NIH HHS; K99 NS067050-01 - NINDS NIH HHS; R01 EB007279 - NIBIB NIH HHS; P01 NS055104-049001 - NINDS NIH HHS; P50 NS010828 - NINDS NIH HHS; R01 HL081273 - NHLBI NIH HHS; R01HL081273 - NHLBI NIH HHS; R01NS057476 - NINDS NIH HHS; R01EB007279 - NIBIB NIH HHS; P01 NS055104 - NINDS NIH HHS; R00 NS067050 - NINDS NIH HHSAccepted manuscrip
    corecore